《博弈生存》

下载本书

添加书签

博弈生存- 第6部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
麭协同进攻?那时没有电话之类的通讯工具,而只有通过派情报员来传递消息。将军A派遣一个情报员去了将军B那里,告诉将军B:敌人没有防备,两军于黎明一起进攻。然而可能发生的情况是,情报员失踪或者被敌人抓获。即:将军A虽然派遣情报员向将军B传达“黎明一起进攻”的信息,但他不能确定将军B是否收到他的信息。事实上,情报员回来了。将军A又陷入了迷茫:将军B怎么知道情报员肯定回来了?将军B如果不能肯定情报员回来的话,他必定不会贸然进攻的。于是将军A又将该情报员派遣到B地。然而,他不能保证这次情报员肯定到了将军B那里……

这就是“协同攻击难题”,它是由格莱斯(J。Gray)于1978年提出。更为糟糕的是,有学者证明,不论这个情报员来回成功地跑多少次,都不能使两个将军一起进攻。

问题在于,两个将军协同进攻的条件是:“于黎明一起进攻”是将军A、B之间的公共知识,然而,无论情报员跑多少次,都不能够使A、B之间形成这个公共知识!如果你是这两位将军中的一个,你有什么办法?

什么是公平分配?
分配是任何时代、任何社会的重要问题。在中国传统中有这样的思维:“不患贫,而患不均”,即是说,人们能够忍受贫穷,而不能忍受社会财富分配的不均等。微观经济学通常涉及三个方面的内容:“生产什么”、“如何生产”以及“如何分配”,即:分配是经济学的一个重要内容。

公平分配是人们追求的目标。然而,什么是公平的分配?

 
首先要确定一个分配的公平标准,某种分配符合这个标准,它就是公平的,否则便是不公平的。

公平的并不是平均的,尽管有时是平均的。一个公平的分配是,各方之所得是其“应该”所得的。但什么是“应该”所得的?

作为理性人,每个人均想多分配一点。现实中的许多争吵,大到国家间的领土争端,小到人与人之间的鸡毛蒜皮的小事,很大一部分是由于分配不公平造成的。这种争吵或者由于一方认为不公平造成的,或者由于双方均认为不公平造成的。

8个金币的故事
有这样一个故事。

约克和汤姆结对旅游。约克和汤姆准备吃午餐。约克带了3块饼,汤姆带了5块饼。这时,有一个路人路过,路人饿了。约克和汤姆邀请他一起吃饭。路人接受了邀请。约克、汤姆和路人将8块饼全部吃完。吃完饭后,路人感谢他们的午餐,给了他们8个金币。路人继续赶路。

 
约克和汤姆为这8个金币的分配展开了争执。汤姆说:“我带了5块饼,理应我得5个金币,你得3个金币。”约克不同意:“既然我们在一起吃这8块饼,理应平分这8个金币。” 约克坚持认为每人各4块金币。为此,约克找到公正的夏普里。

夏普里说:“孩子,汤姆给你3个金币,因为你们是朋友,你应该接受它;如果你要公正的话,那么我告诉你,公正的分法是,你应当得到1个金币,而你的朋友汤姆应当得到7个金币。”

约克不理解。

夏普里说:“是这样的,孩子。你们3人吃了8块饼,其中,你带了3块饼,汤姆带了5块,一共是8块饼。你吃了其中的13,即83块,路人吃了你带的饼中的383=13;你的朋友汤姆也吃了83,路人吃了他带的饼中的583=73。这样,路人所吃的83块饼中,有你的13,汤姆的73。路人所吃的饼中,属于汤姆的是属于你的的7倍。因此,对于这8个金币,公平的分法是:你得1个金币,汤姆得7个金币。你看有没有道理?”

约克听了夏普里的分析,认为有道理,愉快地接受了1个金币,而让汤姆得到7个金币。

在这个故事中,我们看到,夏普里所提出的对金币的“公平的”分法,遵循的原则是:所得与自己的贡献相等。

这就是夏普里值的意思。
所罗门的智慧:公平不是平均
所罗门是历史上以色列国的国王,是大卫王的二儿子。他十分具有智慧。

据传说,有两个妇人争夺一个孩子,让所罗门王来裁决。所罗门王说:“既然你们都说,孩子是自己的,然而你们均没有足够的证据证明孩子确实是自己的, 那么就将孩子劈成两半,你们一人一半,这样不就公平了?”所罗门的话是严肃的。此时,所罗门的手下要执行所罗门的命令。其中一个妇人同意这个分法,认为所罗门王英明;而另一个妇人大哭,说:  
“亲爱的所罗门王,我不要孩子了。整个孩子归她吧。”此时,所罗门对大哭的妇人说:“你才是孩子的母亲。母亲是爱孩子的,宁愿不要孩子,也不要孩子死啊。”所罗门命令手下把那个争孩子的假母亲抓了起来,重重惩罚。

这里,结果是公平的——孩子归他的母亲,而获得这个结果的方式则是充满智慧的。

所罗门王所用的策略是不可重复的,这只有在特殊情况下才能得到:那两个妇人均是在不知道所罗门王的真正意图的情况下表达出自己的偏好的:真母亲首先希望孩子活着,其次才是孩子回到自己的身边;假母亲首先关心的是不要输掉官司,孩子的归属是次要的。

我们看到,这里的公平的分配不是指平均的分配,也不是双方均满意的分配,而是合理的分配。

分小孩——公平不是平均

从分蛋糕到财产分割与边界争端的解决:
双赢的分配两人分一个蛋糕,用什么方法才能分配得公平?一个公平的分法是:由其中一人持刀来分,分者后取。这样,分的人因担心后取而吃亏,他所能采用的最好办法是尽量将蛋糕分平均,即使他后拿,也不会吃亏。

分蛋糕只是对同质的东西所进行的一个简单的分配,对不同质的东西能否建立一个像“你分我先取”分蛋糕那样的一个程序,从而做到公平分配吗?美国纽约大学政治系的勃拉姆  
兹(S。 Brams)教授给出了肯定的回答。他提出了一个“双赢”的分配办法。

我们来看一下一个离婚的财产分割的例子。假定一对夫妇,安娜和汤姆,感情破裂,不想在一起过日子了。他们到法院进行财产分割。

法官看了他们的财产:冰箱、电脑、缝纫机、烟斗、自行车、书桌。一共有6件。法官叫他们对这6件物品进行轮流选择,所选择的归其所有。当然是女士先选。选择顺序是:安娜,汤姆,安娜,汤姆,安娜,汤姆。

选择的结果是什么呢?我们假定安娜与汤姆对不同物品的偏好不同,比如,安娜作为家庭主妇最喜欢冰箱,认为它也最值钱;而汤姆由于工作的关系更喜欢电脑,认为它更有用。他们对物品的“评价”见表41。

离婚分东西表41

排序安娜汤姆1冰箱电脑2缝纫机烟斗3自行车书桌4书桌自行车5电脑冰箱6烟斗缝纫机

于是,选择的结果是:安娜选了冰箱、缝纫机和自行车,而汤姆选了电脑、烟斗和书桌。

安娜得到了6件物品中她认为价值最高的3件物品,汤姆同样得到了他希望得到的价值在前3位的物品。两人对分配均满意。

这是一个双赢分配。

这里所实现的“双赢”分配,其基础是:我们假定了他们对不同的物品的估价“差别较大”,或者说不同物品在不同的人那里其“效用”是不同的。为了分析这里的分配是双赢的结果,我们设定他们对每件物品进行打分,假定满分为100分,安娜和汤姆分别将这100分分配给不同的物品。见表42:

表42

排序安娜汤姆1冰箱28电脑302缝纫机22烟斗253自行车20书桌204书桌15自行车155电脑10冰箱56烟斗5缝纫机5

这样,安娜总共得到了70分,而汤姆得到了75分。两人分配得到的结果大大超过了50分。 勃拉姆兹在《双赢解》一书中还提出了分配的“无嫉妒原则”。这里,安娜的所得为70分,汤姆的所得为75分。安娜嫉妒汤姆,认为他的所得超过自己。勃拉姆兹提出,可以让汤姆补给安娜2。5分值的东西,这样,安娜的心理就平衡了。此时双方都不会产生嫉妒心理。如此看来,这样的分配确实是双赢的。

在上述的分配中,我们假定了安娜和汤姆对不同物品的估价或者排序是不同的。如果他们的估价差不多,情形又将如何?

假定安娜和汤姆对不同物品估价后进行的排序为表43。与前面一样,同样是安娜先选择,然后是汤姆,接着是安娜……

在这样的选择中,如果每个人进行的选择是诚实的,即每个人进行选择时,都是从剩下的物品中选择自己认为价值最高的物品,那么结果是:安娜选择了冰箱、自行车和缝纫机;而汤姆选择了电脑、烟斗和书桌。

表43 诚实的选择

排序安娜汤姆1冰箱电脑2电脑烟斗3自行车书桌4书桌自行车5缝纫机冰箱6烟斗缝纫机

在这个分配中,安娜获得了她认为的价值“第一”,“第三”和“第四”的物品,而汤姆获得了他认为价值“第一”、“第二”和“第六”的物品。

这样的分配对双方来说,虽然不是最好的结果,但是双方应该对这个分配结果感到满意的。

在这个例子中,聪明的读者会想到:安娜第一次不选择冰箱,而先选择电脑,情形会怎样呢?即:安娜的选择是策略性的,而不是诚实的。因为,安娜知道在汤姆那里电脑排第一,而冰箱排倒数第二。安娜第一次选择了电脑,轮到汤姆选择时,汤姆不会选择冰箱,而选择了烟斗。结果见表44。

在表44中,安娜得到了她认为的最值钱的前三位东西。汤姆得到了他认为的第二、第三及第六位价值的物品。

表44 策略选择

排序安娜汤姆1冰箱电脑2电脑烟斗3自行车书桌4书桌自行车5缝纫机冰箱6烟斗缝纫机

在这个例子中,如果汤姆对自己的分配所得的结果不满意,他同样可以采取策略行为。当他看到安娜采取策略性行为而选择了电脑时,论到他选择时,他先选择冰箱!尽管冰箱在他看来价值最低,但他知道冰箱在安娜那里价值

小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架