焕矗颐堑睦肥鞣值骄咛宓谋确志臀薹ㄔ偌绦窒氯ィ庾畹紫碌囊徊憔褪恰笆饕丁保渤莆白罹@贰保╩aximallyfine…grainedhistories)。
对于两片树叶来讲,它们通常是互相相干的。我们无法明确地区分1:0获胜和2:0获胜这两种历史,因此也无法用传统的概率去计算它们。但我们可以通过适当的粗粒化来构建符合常识的那些历史,比如我们可以区分“胜”,“平”和“负”这三大类历史,因为它们之间已经失去了干涉,退相干了。如此一来,我们就可以用传统的经典概率来计算这些历史,这就形成了“一族”退相干历史(adecoherentfamilyofhistories),只有在同一族里,我们才能运用通常的理性逻辑来处理它们之间的概率关系。有的时候,我们也不说“退相干”,而把它叫做“一致历史”(consistenthistories),dh的创建人之一格里菲斯就爱用这个词,因此“退相干历史”也常常被称为“一致历史”解释,更加通俗一点,也可以称为“多历史”(manyhistories)理论。
一般来说,在历史树上越接近根部(往上),粗粒化就越厉害,其干涉也就越小。当然,并非所有的粗粒历史之间都没有干涉,可以被赋予传统概率,具体地要符合某种“一致条件”(consistencycondition),而这些条件可以由数学严格地推导出来。
现在让我们考虑薛定谔猫的情况:当那个决定命运的原子衰变时,就这个原子本身来说,它的确经历着衰变/不衰变两种可能的精粒历史。原子本身只是单个粒子,我们忽略的东西并不多。但一旦猫被拖入这个剧情之中,我们的历史剧本换成了猫死/猫活两种,情况就不同了!无论是“猫死”还是“猫活”都是非常模糊的陈述,描述一只猫具体要用到10^27个粒子,当我们说“猫活”的时候,我们忽略了这只猫与外界的一切作用,比如它如何呼吸,如何与外界进行物质和能量交换……等等。就算是“猫死”,它身上的n个粒子也仍然要和外界发生相互作用。换句话说,“猫活”和“猫死”其实是两大类历史的总和,就像“胜”是“1:0”,“2:0”,“2:1”……等历史的总和一样。当我们计算“猫死”和“猫活”之间的干涉时,我们其实穷尽了这两大类历史下的每一对精粒历史之间的干涉,而它们绝大多数都最终抵消掉了。“猫死”和“猫活”之间那千丝万缕的联系于是被切断,它们退相干,最终只有其中的一个真正发生!如果从密度矩阵的角度来看问题,则其表现为除了矩阵对角线上的那些经典概率之外,别的干涉项都迅速消减为0:矩阵“对角化”了!而这里面既没有自发的随机定域,也没有外部的“观测者”,更没有看不见的隐变量!
如果dh解释是正确的,那么我们每时每刻其实都经历着多重的历史,世界上的每一个粒子,事实上都处在所有可能历史的叠加中!但一旦涉及到宏观物体,我们所能够观察和描述的则无非是一些粗粒化的历史,当细节被抹去时,这些历史便互相退相干,永久地失去了联系。比方说如果最终猫还活着,那么“猫死”这个分支就从历史树上被排除了,按照奥卡姆剃刀,我们不妨说这些历史已经不存在于宇宙之中。
嗯,虽然听起来古怪,但它至少可以自圆其说,不是吗?粗粒化的方法看起来可能让人困惑,但其实却并没有那么大惊小怪,我们事实上经常有意无意地用到这些办法。比如在中学里我们计算地球和太阳之间的引力,我们把两个星球“粗粒化”为两个质点。实际上地球和太阳是两个庞大的球体,但以质心代替所有的点,而忽略它们的具体位置之后,我们实际上已经不知不觉地加遍了两个球体内部每一对质点之间的吸引力。在dh解释中,我们所做的只不过更加复杂一点罢了。
从数学上说,dh是定义得很好的一个理论,而从哲学的雅致观点来看,其支持者也颇为得意地宣称它是一种假设最少,而最能体现“物理真实”的理论。但是,dh的日子也并不像宣扬的那样好过,对其最猛烈的攻击来自我们在上一章提到过的,grw理论的创立者之一giancarloghirardi。自从dh理论创立以来,这位意大利人和其同事至少在各类物理期刊上发表了5篇攻击退相干历史解释的论文。ghirardi敏锐地指出,dh解释并不比传统的哥本哈根解释好到哪里去!
正如我们已经为大家所描述过的那样,在dh解释的框架内我们定义了一系列的“粗粒”的历史,当这些历史符合所谓的“一致条件”时,它们就形成了一个互相之间退相干的历史族(family)。比如在我们的联赛中,针对某一场具体的比赛,“胜”,“平”,“负”就是一个合法的历史族,在它们之间只有一个能够发生,因为它们互相之间都已经几乎没有联系。但是,在数学上利用同样的手法,我们也可以定义一些另外的历史族,它们同样合法!比如我们并不一定关注胜负关系,而可以考虑另外的方面比如进球数。现在我们进行另一种粗粒化,把比赛结果区分为“没有进球”,“进了一个球”,“进了两个球”
以及“进了两个以上的球”。从数学上看,这4种历史同样符合“一致条件”,它们构成了另一个完好的退相干历史族!
现在,当我们观测了一场比赛,所得到的结果就取决于所选择的历史族。对于同一场比赛,我们可能观测到“胜”,但换一个角度,也可能观测到“进了两个球”。当然,它们之间并不矛盾,但如果我们仔细地考虑一下,在“现实中”真正发生了什么,这仍然叫我们困惑。
当我们观测到“胜”的时候,我们假设在其属下所有的精粒历史都在发生,比如1:0,2:1,2:0,3:0……所有的历史都发生了,只不过我们观测不到具体的精细结果,也对它们并不感兴趣。可对于同样一场比赛,我们也可能观测到“进了两个球”,这时候我们的假设其实是,所有进了两个球的历史都发生了。比如2:0,2:1,2:2,2:3……
现在我们考虑某种特定的精粒历史,比如说1:0这样一个历史。虽然我们从来不会实际观测到这样一个历史,但这并不妨碍我们去问:1:0的历史究竟发生了没有?当观测结果是“胜”的时候,它显然发生了;而当观测结果是“进了两个球”的时候,它却显然没有发生!可是,我们描述的却是同一场比赛!
dh的本意是推翻教科书上的哥本哈根解释,把观测者从理论中赶出去,还物理世界以一个客观实在的解释。也就是说,所有的物理属性都是超越于你我的观察之外独立存在的,它不因为任何主观事物而改变。但现在dh似乎是哑巴吃黄连——有苦说不出。“1:0的历史究竟是否为真”这样一个物理描述,看来的确要取决于历史族的选择,而不是“客观存在”的!这似乎和玻尔他们是殊途同归:宇宙中没有纯粹的客观的物理属性,所有的属性都只能和具体的观察手段连起来讲!
但dh的支持者辩护说,任何理性的逻辑推理(reasoning),都只能用在同一个退相干家族中,而不能跨家族使用。比如当我们在“胜,平,负”这样一族历史中得到了“1:0的精粒历史发生了”这样一个结论后,我们绝不能把它带到另一族历史(比如“没进球,进1球,进2球,进2球以上”)中去,并与其相互比较。他们把这总结成所谓的“同族原则”(singlefamilyrule),并宣称这是量子论中最重要的原则。
这一点先放在一边不论,dh的另一个难题是,在理论中实际上存在着种类繁多的“退相干族”,而我们在现实中观察到的却只有一个!还是拿我们的量子联赛来说,就单单一场比赛而言,我们在前面定义了一个退相干族,也就是“胜,平,负”。这一族中包含了3大种粗粒历史,它们之间都互相退相干。这看上去一点都不错,但问题是,并不只有“胜,平,负”这样的分法是可能的,还有无穷种其他的分法,其中的大部分甚至是千奇百怪,不符合常识的,但理论并没有解释我们为何观测到的不是这些另外的分类!
比方说,我们从理论上定义3种历史:“又胜又平”,“又胜又负”,“又平又负”
,这3种历史在数学上同样构成一个合法并且完好的退相干族:它们的概率可以经典相加,你无论观测到其中的哪一种,就无法再观测到另外的两种。但显然在实际中,一场比赛不可能“又胜又负”,那么dh就欠我们一个解释,它必须说明为什么在现实中的比赛是分成“胜,平,负”的,而不是“又胜又平”之类,虽然它们在数学上并没有太大的不同!
在这个问题上,dh的辩护者也许会说,理论只有义务解释现实的运作,而没有义务解释现实的存在!我们是从现实出发去建立理论,而不是从理论出发去建立现实!好比说“1头牛加1头牛等于2头牛”和“1头斯芬克斯加1头斯芬克斯等于2头斯芬克斯”在数学上都是成立的,但数学没有义务解释为什么在现实世界中,实际可供我们相加的只有牛,而没有斯芬克斯这样的怪兽。在这一点上实证主义者和柏拉图主义者往往会产生尖锐的冲突,一个突出的例子是我们在后面将会略微讨论到的超弦理论。弦论用10个维度来解释我们的世界,其中6个维度是蜷缩的,但它没有说明为什么是6个维度蜷缩,而不是5个或者8个维度,这使它受到了一些尖锐的诘问。但实证主义者常常会对这样的穷追猛打感到奇怪:因为只有假设6个维度蜷缩才能解释我们观测到的现实世界(现实世界是4维的),这就够了嘛,这不就是所有的理由吗?哪还来的那么多刨根问底呢?
不过dh的支持者如果护定这样一种实证主义立场的话,他们也许暂时忽略了建立这个理论的初衷,也就是摆脱玻尔和海