大质量恒星将比太阳更快速度的多地把它们的氢燃烧成氦。这意味着它们可以在短到几亿年的时间内把氢耗尽。此后,这类恒星面临着危机。它们能把氢燃烧成诸如碳和氧等等更多的元素,但是这些核反应不会释放出大量能量,这样恒星失去支持自身对抗引力的热量和热压力。因此它们开始变得更小。如果它们质量大约比太阳质量的两倍还大,其压力将永远不足以停住收缩。它们将坍缩成零尺度和无限尺度,从而形成所谓的奇点。在这张时间对离开中心距离的图上,随着恒星缩小,从它表面发出的光线轨迹会在起始时间和垂直直线夹越来越小的角度。当恒星达到一定的临界半径,其轨迹就变成图上的垂线,这意味着光线将在离恒星常距离处逗留,永远不能离开。光线的临界轨迹掠过的表面称做事件视界,它把时空中的光线能够逃逸的区域和不能逃逸的区域或隔开。在横行通过其事件视界后,从它表面发射的光线将被时空曲率向里面弯曲。恒星就成为一个米歇尔的暗星,或者用我们现在的话讲,就是黑洞。
如果光线不能从黑洞逃出,你何以检测它呢?其答案是黑洞正如坍缩之前的物体那样,仍然把同样的引力拉力施加在周围的对象上。如果太阳是一个黑洞面且在转变成黑洞之前没有损失任何质量,则行星将仍然像现在这样围绕着它公转。
因此搜索黑洞的一种方式是寻找围绕着似乎是看不见的紧致的大质量物体公转的物体。若干这样的系统已被测到。发生在星系和类星体中心的巨大黑洞也许是最令人印象深刻的。
迄此讨论到的黑洞的性质还未触犯宿命论。一位落进黑洞并撞到奇点上去的的航天员的时间将会结束。然而,在广义相对论中,人们可以在不同的地方随意地以不同的速率来测量时间。因此,人们可以在航天员接近奇点时加快他或她的手表,使之仍然记下无限的时间间隔。在时间距离图上,这个新时间的常数值的表面将会在中心拥有在一起,刚好在奇性出现的点的下头。但是它们在远离黑洞的几乎平坦的时空中和通常的时间测度相一致。
人们可以在薛定谔方程中使用这个时间,如果他知道初始的波函数,便能计算后来的波函数。这样,人们仍然有宿命论。然而,值得注意的是,在后期波函数的一部分处于黑洞之内,它不能被外界的人观察到。这样,一位明知地不落入黑洞的观察者不能往过去方向演化薛定谔方程并且计算出早先时刻的波函数。为了做到这一点,他或她就需要知道黑洞之内的那一部分波函数,这包含有落进黑洞的物体的信息。因为一个给定质量和旋转速度的黑洞可由非常大量的不同的粒子集合形成,所以这可能是非常大量的信息。一个黑洞与坍缩形成它的物体的性质无关。约瀚 ·惠勒把这个结果称为“黑洞无毛”。对于法国人而言,这正好证实另外他们的猜疑。
当我发现了黑洞不是弯曲黑的时候,和宿命论的冲突就产生了。正如我们在第二章中看到的,量子理论意味着,甚至在所谓的真空中场也不能够精确地为零。如果它们为零,则他们不但有精确的值即位置为零,而且有精确的变化率即速度亦为零。这就违反了不确定性原理。该原理讲,不能同时很好地定义位置和速度。相反地,所有的场必须有一定量的所谓的真空起伏。真空起伏可以几种似乎不用的方式解释,但是这几种方式事实上在数学中是等效的。从实证主义观点,人们可以随意选择任何对该问题最有用的图象。在这种情形下,使用下述的图象来理解真空起伏是非常有助的。在时空的某处同时出现的虚粒子对相互分离,在回到一块而且相互湮灭。“虚的”表明这些粒子不能被直接观测到,但是它们的间接效应能被测量到,而且它们和理论预言相符合的精确度令人印象深刻。
如果黑洞在场的话,则粒子对中的一个成员可以落入黑洞,留下另一个成员自由地逃往无穷远处。从远离黑洞的某人的观点看,逃逸粒子就显得是被黑洞辐射出来。黑洞的谱干刚好是我们从一个热体所预料到的谱,其温度和视界——黑洞的边界上的引力场成正比。换言之,黑洞的无度依赖于它的大小。
一个具有几倍太阳质量的黑洞的温度大约为百万分之一度的绝对温度,而一个更大的黑洞之温度甚至更低。这样,从这类黑洞出来的任何量子辐射完全被湮灭在热大爆炸遗留下的2。7度的辐射;也就是我们在第二章中讨论过的宇宙背景辐射之中。人们也许可能检测到从小很多即热很多的黑洞来的辐射,但是似乎它们在附近也不很多。这是一个遗憾。如果有一个被发现,我就要得到诺贝尔奖。然而,我们拥有这种辐射的间接观测证据,它来自于早期宇宙。正如在第三章中描述的,人们认为宇宙的早期历史经历了一个暴胀时期。宇宙在这一时期以不断增加的速率膨胀。这个时期的膨胀如此之快,以至于有些物体离开我们太远,连它们的光线都从未抵达我们这里;在光线向我们传来时,宇宙已膨胀得太多太快了。这样,在宇宙中存在一个视界,正如黑洞的视界那样,把已光线能抵达我们的区域和不能抵达的区域分离开来。
非常类似的论证表明,如果存在从黑洞视界来的辐射那样,也应该存在从这个视节来的热辐射。我们已经知道如何在热辐射中预期密度起伏的特征谱。在这种情形下,这些密度起伏会随着宇宙而膨胀。当它们的尺度超出事件视节的尺度时,它们就被凝固了,这样它们作为从早期宇宙残留下来的宇宙背景辐射的温度中的小变化,今天可被我们观测到。这些变化的观测和热起伏的预言相互一致的程度令人印象深刻。
尽管黑洞辐射的观测证据有些间接,所有研究过这一问题的人都一致认为,为了和我们其他观测上检验过的理论相一致,它必然发生。这对于宿命论具有重要的含义。从黑洞来的辐射将带走能量,这表明黑洞将失去质量而变得更小。接下去,这意味着它的温度会上升,而且辐射率将增加。黑洞最终将到达零质量。我们不知如何计算在这一点所要发生的,但是仅有的自然而又合理的结果似乎应是黑洞完全消失。那么,波函数在黑洞里的部分以及它挟持的有关落入黑洞物体的信息的下场如何呢?第一种猜想是,当黑洞最后消失时,这一部分波函数,以及它携带的信息将会涌现。然而,携带信息不能不消费,正如人们到电话帐单时意识到的那样。
信息需要能量去负载它,而在黑洞的最后阶段只有很小的能量留下。内部信息逃逸的仅有的似乎可行的方式是,它连续地伴随着辐射出现,而不必等待到最后阶段。然而,根据虚粒子对的一个成员落进,而另一成员逃逸的图象,人们预料逃离粒子也落入粒子不相关,或者前者不携带走有关后者的信息。这样,仅有的答案似乎是,在黑洞内的波函数中的信息丢失了。
这种信息丧失对于宿命论具有重要的意义。让我们从头开始,我们注意到,即便你知道黑洞消失后波函数,你也不只能把薛定谔方程演化回去并计算在黑洞形成之前的波函数,它是什么样子会部分地依赖于在黑洞中丢失的那一点波函数。我们习惯地以为,我们可以准确地知道过去。然而,如果信息在黑洞中丧失,情况就并非如此。任何事情都可能已经发生过。
然而,一般说来,人们诸如占星家和他们的那些咨询者对预言将来比回溯过去更感兴趣。初看起来,似乎落到黑洞中的波函数部分的丧失不应妨碍我们语言黑洞外的波函数。但是,结果是这一丧失的确干扰了这一预言,正如我们在考虑爱因斯坦,玻里斯·帕多尔基和纳珍·罗森在20世纪30年代提出一个理想实验时能够看到的。
想象一个放射形原子衰变并在相反方面发出两个都有相反自旋的粒子。一位只看到其中一个粒子的观察者不能预言该粒子是往右还是往左自旋,但是如果观察者测量到它往右自旋,那么他或她就能确定地子往左自旋,反之亦然。爱因斯坦认为这证明了量子理论是荒谬的:另一个粒子现在也许在星系的另一边,而人们会立即知道它自旋的方向。然而,其他大多数科学家都同意,不是量子理论,而是爱因斯坦弄混淆了。爱因斯坦…帕多尔基…罗森理想实验并不表明人们能比光更快地发送信息。那正是荒谬的部分。人们不能选择其自己的粒子将被测量为向右自旋。
事实上,这个理想实验正好是黑洞辐射所发生的。虚粒子对有一波函数,它预言这两个成员肯定具有相反的自旋。我们想做的是预言飞离粒子的自旋和波函数,如果我们能够观察到落入的粒子,我们变能做到这一点。但是那个粒子现在处于黑洞之内,不能测量得到它的自旋和波函数。正因为这样,人们无法预言逃逸粒子的自旋或波函数。它可具有不同的自旋和不同的波函数,其概率是各式各样的,但是它不能具有唯一的自旋或波函数。这样看来,我们语言将来的能力被进一步削减了。拉普拉斯的经典思想,即人们能同时预言粒子的位置和速度,因为不确定性原理指出人们不能同时准确地测量位置和速度,必须被修正。然而,人们仍然能准确测量波函数并且利用薛定谔方程去预言未来应发生的事。这是人们根据拉朴拉斯思想所能预言的一半。我们能够确定地预言粒子具有相反的自旋。但是如果一个粒子落进黑洞,那么我们就不能对余下的粒子作确定的预言。这意味着在黑洞为不能确定预言任何测量:我们作出确定预言的能力被减低至零。这样,也许就预言将来而言,占星家和科学家定律是半斤八两。
许多物理学家不喜欢这种宿命论的降低,因而建议可以某种方式从黑洞之内将信息取出