家所论,未尝不确知灼见,然均未得其详。锐据明史历志、回回本术,参以近年瞻礼单,精加考核,谓回回历有太阳年,彼中谓为宫分;有太阴年,彼中谓为月分。宫分有宫分之元,则开皇己未是也;月分有月分之元,则唐武德壬午是也。自开皇己未至洪武甲子,积宫分年七百八十六,自武德壬午至洪武甲子,积月分年亦七百八十六,其惑人者即此两积年相等耳,因著回回历元考。有求宫分白羊一日入月分截元后积年月日法,以为不明乎此,虽有立成,不能入算也。稿佚未刊。主
梅氏梅氏未见古九章,其所著方程论,率皆以臆创补,然又囿於西学,致悖直除之旨。锐寻究古义,探索本根,变通简捷,以旧术列於前,别立新术附於后,著方程新术草,以期古法共明於世。古无天元一术,其始见於元李冶测圆海镜、益古演段二书,元郭守敬用之,以造授时历草,而明学士顾应祥不解其旨,妄删细草,遂致是法失传。自梅文穆悟其即西法之借根方,於是李书乃得郑重於世。其有原术不通,别设新术数则,更於梅说外辨得天元之相消,有减无加,与借根方之两边加减法少有不同。斋
且不且不满顾氏所著之句股、弧矢两算术,谓:“弧矢肇於九章方田,北宋沈括以两矢冪求弧背,元李冶用三乘方取矢度,引伸触类,厥法綦详。顾氏如积未明,开方徒衍,不亦傎乎?”爰取弧矢十三术,入以天元,著弧矢算术细草。并仿演段例,括句股和较六十馀术,著句股算术细草,以导习天元者之先路。斋
又从又从同里顾千里处得秦九韶数学九章,见其亦有天元一之名,而其术则置奇於右上,定於右下,立天元一於左上。先以右上除右下,所得商数与左上相生,入於左下。依次上下相生,至右上末后奇一而止,乃验左上所得以为乘率。与李书立天元一於太极上,如积求之,得寄左数与同数相消之法不同。因知秦书乃大衍求一中之又一天元,秦与李虽同时,而宋元则南北隔绝,两家之术,无缘流通,盖各有所授也。知
锐尝锐尝谓:“四时成岁,首载虞书,五纪明历,见於洪范。历学诚致治之要,为政之本。乃通典、通考置而不录,邢云路虽撰古今律历考,然徒援经史,以侈卷帙之多。梅氏祗有欲撰历法通考之议,卒未成书。因更网罗诸史,由黄帝、颛顼、夏、殷、周、鲁六历,下逮元、明数十馀家,一一阐明义蕴,存者表而章之,缺者考而订之,著为司天通志,俾读史者启其扃,治历者益其智。”惜仅成四分、三统、乾象、奉天、占天五术注而已。馀与开方说皆属稿未全。斋
开方开方说三卷,锐读秦氏书,见其於超步、退商、正负、加减、借一为隅诸法,颇得古九章少广之遗,较梅氏少广拾遗之无方廉者,不可以道里计。盖梅氏本於同文算指、西镜录二书,究出自西法,初不知立方以上无不带从之方。锐因秦法推广详明,以著其说。甫及上、中二卷而卒,年四十有五。其下卷则弟子黎应南续成之。主
应南应南,字见山,号斗一,广东顺德人。嘉庆戊寅顺天经魁,以书馆议叙,选浙江丽水县知县,调平阳县知县。海疆俸满,加六品衔,卒於官。古
骆腾骆腾凤,字鸣冈,山阳人。嘉庆六年举人,道光六年,大挑一等,用知县。以母老不原仕,改授舒城县训导。未一年,告养归,教授里中,学徒甚众。二十二年八月,卒於家,年七十有二。性敏锐,好读书,尤精畴人术。在都中从锺祥李潢学,研精覃思,寒暑靡间。古
著开著开方释例四卷,自序略谓:“天元一术,见宋秦九韶大衍数中,不言创於何人。元李冶测圆海镜、益古演段二书,亦用此例。冶称其术出於洞渊九容,今不可详所自矣。是书自平方以至多乘,悉用一术,即刍童、羡馀诸形,亦可握觚而得,洵算术之秘钥也。西法借根方实原於此,乃以多少代正负,徒欲掩其袭取之迹。不知正负以别异同,多少以分盈朒,毫釐千里,必有能辨之者。”斋
又著又著游艺录二卷,自识云:“余於正、负开方之例,既为释例以明其法矣。至於衰分方程、句股等法,以及九章所未载,与夫古今算术之未能该洽者,辄为溯其源,正其误。不敢掠前哲之美以为名,亦不为黯黮之词以欺世也。随所见而识之,汇为一编。”遗稿凡十馀万言,即今传本也。斋
南汇南汇张文虎尝与青浦熊户部其光书论之曰:“承示骆司训算书二种,读竟奉缴。李四香开方说,详於超步、商除、翻积、益积诸例,而不言立法之根,令初学者茫不解其所谓。骆氏於诸乘方、方廉、和较、加减之理,皆质言之,而推求各元进退、定商诸术,尤足补李书所未备,诚学开方者之金锁匙。汪孝婴创设两句股同积同句股和一问,以两句弦较中率转求两句弦较,立术迂回。骆氏以正、负开方径求得两句,颇为简易。衡斋亦当首肯也。”其为人所推服如此。知
项名项名达,字梅侣,仁和人。嘉庆二十一年举人,考授国子监学正。道光六年,成进士,改官知县,不就,退而专攻算学。三十年,卒于家,年六十有二。著述甚富,今传世者,但有下学庵句股六术及图解,复附句股形边角相求法三十二题,合为一卷。以句股和较相求诸题术稍繁难,爰取旧术稍为变通。分术为六,使题之相同者通为一术,釐然悉有以御之。第一、二、三术及第四术之前二题,悉本旧解,馀为更定新术,皆别注捷法,各为图解,以明其意。第四、五、六术其原皆出於第三术,可释之以比例。第三术以句弦较比股,若股与句弦和,以股弦较比句,若句与股弦和,是为三率连比例。凡有比例加减之,其和较亦可互相比例。故第四、五、六术诸题,皆可由第三术之题加减而得,即可因第三术之比例而另生比例。因比例以成同积,而诸术开方之所以然遂明。名达又创有弧三角总较术,求橢员弧线术,术定,未有诠释,以义奥趣幽,难猝竟事,故六术独先成云。主
名达名达与乌程陈杰、钱塘戴煦契最深,晚年诣益精进,谓古法无用,不甚涉猎,而专意于平弧三角,与杰意不谋而合。与杰论平三角,名达曰:“平三角二边夹一角,迳求斜角对边,向无其法,窃尝拟而得之,君闻之乎?”杰曰:“未也。”录其法以归。盖以甲乙边自乘与甲丙边自乘相加,得数寄左;乃以半径为一率,甲角馀弦为二率,甲乙、甲丙两边相乘倍之为三率,求得四率,与寄左数相减,钝角则相加,平方开之,得数即乙丙边。古
又尝又尝谓泰西杜德美之割圜九术,理精法妙,其原本于三角堆,董方立定四术以明之,洵为卓见。惟求倍分弧,有奇无偶,徐有壬补之,庶几详备。名达尝玩三角堆,叹其数祗一递加,而理法象数,包蕴无穷,夫方圜之率不相通,通方圜者必以尖,句股,尖象也;三角堆,尖数也。古法用半径屡求句股得圜周,不胜其繁。杜氏则以三角堆御连比例诸率,而弧弦可以互通,割圜术蔑以加矣。然以此制八线全表,每求一数,必乘除两次,所用弧线,位多而乘不便,董、徐二氏大、小弧相求法亦然。向思别立简易法,因从三角堆整数中推出零数,但用半径,即可任求几度分秒之正馀弦,不烦取资于弧线及他弧弦矢。且每一乘除,便得一数,似可为制表之一助。斋
又著又著象数原始一书,未竟,疾革时,嘱戴煦。后煦索稿於名达子锦标,校算增订六阅月而稿始定,都为七卷。原书之四,仅六纸,并第七卷皆煦所补也。卷一曰整分起度弦矢率论,卷二曰半分起度弦矢率论,卷三、卷四曰零分起度弦矢率论,皆以两等边三角形明其象,递加法定其数,末乃申论其算法。卷五曰诸术通诠,取新立弧弦矢求他弧弦矢二术、半径求弦矢二术及杜、董诸术,按术诠释之。卷六曰诸术明变,杂列所定弦矢求八线术,开诸乘方捷术,算律管新术,橢员求周术,以明皆从递加数转变而得。卷七曰橢员求周图解,原术以袤为径,求大员周及周较,相减而得周,补术则以广为径,求小员周,周较相加而得周,末系以图解。徐有壬巡抚江苏,邮书索煦写定本梓行,刻甫就而有壬殉难,书与板皆毁焉。知
有王有王大有者,字吉甫,仁和诸生。翰林院待诏。穷究天算,问业於处士戴煦。凡煦所著述,皆录副本去,名达见之,因与煦订交。大有尝校割圜捷术合编。后殉於杭州。主
丁取丁取忠,字果臣,长沙人。研究象数,不求闻达,刻算书二十有一种,为白芙堂丛书。光绪初,卒于家,年逾七十。所自譔者为数学拾遗一卷,以所演算草较详,可便初学,又意在拾遗,故未暇详其义之出自何人。斋
又譔又譔粟布演草二卷,自序曰:“道光壬辰,余始习算,友人罗寅交学博洪宾以难题见询,久无以应。同治初元,始获交南丰吴君子登太史,驭以开屡乘方法,余始通其术,然未悉其立法之根也。后吴君游岭表,余推之他题,及展转相求,仍多窒碍。又函询李君壬叔,蒙示以廉法表及求总率二术,而其理始显。后吴君又示以指数表及开方式表,李君复为之图解以阐其义。由是三事互求,理归一贯。余因取数题详为演草,并捷法图解,都为一卷。质之南海邹君特夫,君复为增订开屡乘方法,并另设题演草,补所未备。即算家至精之理,如圜内容各等边形,皆可借发商生息以明之,诚快事也!”主
后又后又譔演草补一篇,序云:“余前年与左君壬叟共辑粟布演草,原为商贾之习算者设,或一例而演数题,或一题而更数式。或用真数,或用代数。其式或横列,或直下,杂然并陈,无非欲学者比类参观,易於领悟也。乃初学习之,犹谓茫无入门处,盖商贾所习算书,大都详於文而略於式。况代数又古算术所无,宜其卒然览之而不解也。兹更拟一题附后,特仿数理精蕴借根方体例,专详於文