提出了一系列的新概念和新理论。
太空生长晶体的成功,给人类在宇宙生产设备的研制和生产产品的设计
方面提供了可能和重要依据,人类开发宇宙和移民太空已不是遥远的事情
了。
21 世纪的突破
全球经济腾飞的洪流,势不可挡,汹涌澎湃,冲击着科学、技术、产业、
文化的经络,展示出未来 21 世纪的宏伟蓝图。材料仍然是 21 世纪经济发展
的柱石,科学家们已经预言:非晶态如繁星密布;高温超导将掀起第四次技
术革命;纳米将是 21 世纪的材料新单元;高分子将功盖全球。这一切将汇成
21 世纪的最强音,人类的文明将进入新纪元。
繁星闪烁
非晶态材料是材料科学中一个广阔而又崭新的领域。自然界中的各种物
质,按组成物质的原子模型,分为两大类:一类为“有序结构”的晶态物质,
它的原子占据着布拉菲点阵上的顶点,而每个晶胞则呈有规律的周期性排
列。另一类是气体、液体和某些固体(非晶固体)则称为“无序结构”。气
体相当于物质的稀释态,液体和非晶态固体相当于物质的凝聚态。液体分子
就像口袋里装着的小弹子,一个紧挨一个地密集堆叠在一起。气态或液态也
可获得非晶态的固体。非晶态固体的分子好像液体一样,以同样的紧密程度,
一个紧挨着一个无序堆积(杂乱无章地堆积)。所不同的是在液体中,分子
很容易流动。而在稠密的糊状物中,分子滑动则变得很困难。非晶固体中的
分子则不能滑动,具有固有的形状和很大的刚硬性,被称为“凝结的液体”。
“非晶态”的概念在人们的头脑里是相对于“晶态”而言的。金属和很
多固体,它们的结构状态是按一定的几何图形、有规则地周期排列而成,就
是我们曾定义的“有序结构”。而在非晶态材料的结构中,它只有在一定的
大小范围内,原子才形成一定的几何图形排列,近邻的原子间距、键长才具
有一定的规律性。例如非晶合金,在 15~20 范围内,它们的原子排列成四
面体的结构,每个原子就占据了四面体的棱柱的交点上。但是,在大于 20
的范围内,原子成为各种无规则的堆积,不能形成有规则的几何图形排列。
因此,这类材料具有独特的物理、化学性能,有些非晶合金的某些性能要比
晶态更为优异。
在人类发展史上,非晶态物质如树脂、矿物胶脂等,早在几千年前的远
古时代,已被人类的祖先所利用。在我国,玻璃制造至少已有 2000 年的历史。
近半个世纪以来,人们几乎全部致力于理想的晶态物质及其超高纯度高均匀
方面的研究,而忽略了非晶态物质的开发。
20 世纪 30 年代,克拉默尔用气相沉积法获得了第一个非晶态合金。50
年代中期,科洛密兹等人,首先发现了非晶态半导体具有特殊的电子特性。
1958 年,安德森提出:“组成材料的几何图形(晶格)混乱无规则地堆积到
一定程度,固体中的电子扩散运动几乎停止,导致非晶态材料具有特殊的电、
磁、光、热的特性。”这就引起了科学家们的极大兴趣。但是,当时如何制
造能够应用的非晶态材料的方法尚未解决,金属、合金的生产仍沿用传统的
炼金术。
1960 年,美国加州理工学院杜威兹教授领导的研究小组发明了用急冷技
术制作出进行工业生产的非晶合金的办法。采用这种方法,可以制备出各种
宽度的非晶合金条带,条带的带宽已达 150 毫米以上。另外,这种方法还可
制备非晶态的粉末,其粉末粒度直径可达 1μm(微米,1‰毫米)左右。这
种方法也可制备非晶合金丝。此方法在冶金工业生产工序上节省了多道工
序,节省能源消耗,被称为冶金工艺的一次革命,也就是“炼金术”的革命。
非晶固体的研究结果已发现的非晶态材料包括:非晶态金属及其合金、
非晶态半导体、非晶态超导体、非晶态电介质、非晶态离子导体、非晶态高
分子及传统的氧化物玻璃等。可见非晶态材料是一个包罗万象,极为富有的
材料家族,它已广泛应用于航天、航空、电机、电子工业、化工以及高科技
各领域并取得了显著效果,而且,还继续显示着它的不竭功能。
非晶态金属比一般金属具有极高的强度,如非晶态合金 Fe80B20,其断裂
强度达 370kg/mm2,是一般优质结构钢的 7 倍,弯曲形变可达 50%以上。可
见,它在保持高强度的同时还具有较高的韧性。这种非晶态合金还具有优异
的抗辐射特性,经中子、γ射线辐照而不损坏,在火箭、宇航、核反应堆、
受控核反应等方面都具有特殊的应用。非晶态材料可以制备成复合材料和层
状材料。在产品生产工序上,金属玻璃的制备可以连续生产,一次成型,生
产程序简单、成本低廉。自 1974 年起,美国、日本、西德、法国已大量投资,
提供了不少的市场产品。
非晶态合金在工业上首先使用于变压器,非晶合金片薄,一般为 20~30
μm(微米,1‰毫米)制成这种微型优质变压器适用于航天、航空、航海的
供电网络上。由它制成的其他配电变压器、脉冲变压器都已投入使用。常用
的变压器铁心均是用硅钢片制造,而且条经过冲压、剪切、绝缘等 6~8 道工
序。采用非晶态合金片,减少了这一连串工序,而且所制成的变压器能量损
耗低,只有硅钢片变压器的 40%。同时,这种非晶态合金片的强度比硅钢片
的高,耐腐蚀性好,还具有极优的电学性能。不久,用非晶态合金片做成的
电动机诞生了。1980 年,美国 GE 公司用非晶态合金片做成了电动机,其体
积小,能量损耗低,其耗能只有用硅钢片制成的电动机的 1/3。目前,全世
界已有 6~7 万台非晶态合金制成的配电变压器投入运行。如果在我国,将硅
钢片制造的配电变压器全部换成非晶态合金片的变压器,那么每年可节电
100 亿度,约合价值人民币 10 亿元以上。世界上属于非晶合金的生产类型很
多,美国有 58 个,日本 73 个,我国 28 个,并且已有年产百万吨铁心的非晶
合金厂。非晶合金种类极多,有以铁为主的叫铁基非晶态合金,还有钴基、
铁—镍基、铁—钴基、铜基、镍基等。非晶合金还包括永久磁性或在电场下
具有磁性的磁性材料,前者称硬磁材料,后者称软磁材料。
非晶态磁头,是非晶态合金应用的另一个领域。一种钴——铁——镍—
—铌——硅——硼体系的非晶态合金耐磨性高、噪声小、硬度高(比常用磁
头的硬度高 2~3 倍),是很好的磁记录材料。
早在 1988 年,我国已生产 80 吨非晶态软磁合金,用于电子工业的各种
电器。非晶态钯——硅合金,可作成电磁、超声信号延迟线,作为信号延迟
一段时间的器件,并用于军工、雷达电子计算机、彩色电视、通迅系统或测
量仪器。电磁延迟线可由几毫微秒延长达几十微秒,超声延迟线则由几微秒
延迟到几千微秒,均可直接使用,免除了一大套延迟讯号的线路和仪器设备。
用非晶态合金制作成性能稳定、精确可靠的应变仪和各种传感器都已投入使
用,已形成替代原有设备、器件之趋势。
非晶态还有一些独特功能,如低热膨胀系数、在磁场作用下变形接近于
零等,根据这些特性,人们已经制造出各种要求不随温度、磁场而变化的精
密仪器,如标准量具、精密天平、高精度钟表、104~105 立方米的液化天然
气的大型运输罐等。常用的磁录像机、电视和电子显微镜也都需要大量的非
晶态合金,如铁——硼系,铁——磷系(铁、镍、钴)——锆系等非晶态合
金。
有的非晶态合金具有恒弹性特性,在受到不同压力作用下,其产生的形
变大小,不随温度变化而变化,是制作精密计量仪器的重要材料。
非晶态合金具有超高强度、高硬度、耐腐蚀的性质,是一种非常理想的
刀具和轴承材料。
非晶硅太阳能电池,在国际能源危机的情况下,闪耀着夺目的光辉。由
于太阳能是取之不尽、用之不竭和没有污染的能源,所以非晶硅的研究热潮
席卷全球。美国在 1986 年以前十年中已在这方面投入 15 亿美元。著名的物
理学家英特在第八届国际非晶态会议的闭幕式上说:“我不能预见未来,不
能说明究竟在什么时候,太阳能电池将要取代石油!”
各种富有特性的非晶态材料已占领了科学、技术、产业的各个领域,它
们已成为重要的新型固体材料的大家族。虽然,非晶态科学从理论到实践,
还有许多问题尚未清楚,但是,有关非晶态材料的许多特性已被人们慢慢认
识并付诸应用,在非晶态材料这个广阔的领域内,人们将会开拓出许多新课
题、新性能、新材料和新前景。当代冶金工业的“炼金术”的革命,在 21
世纪将继续产生重大的影响。
全球高温超导热的延伸与第四次技术革命
人类的发展史上曾经兴起过三次技术革命的风暴,它们已经被光荣地载
入史册。首次技术革命始于 18 世纪 60 年代,是以蒸汽机的广泛应用为标志,
推动了社会工业化的大革命。第二次技术革命发生在 19 世纪 7O 年代,是以
电力的广泛应用和无线电通讯的发明为标志,把全球推进到了生产自动化的
文明社会。第三次技术革命的掀起是在 20 世纪 50 年代以后,科学家们进行
了一些重要的实验,以发现了原子结构、电子、原子核分裂产生原子能、电
子计算机、激光的广泛应用为标志,把人类社会推向了高度智能化的高度文
明年代。随着高温超导体的发现,科学家们凭着高度灵敏的科学灵感,第四
次技术革命即将到来!这是多么令人振奋的消息!在人类发展的历史长河中
又要增添闪光的新星